Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Biotechnol J ; 19(3): e2300552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528347

RESUMO

Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Humanos , Anticorpos Monoclonais/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Polissacarídeos , Receptores Fc/genética , Engenharia de Proteínas/métodos , Plantas/genética , Plantas/metabolismo
2.
Expert Rev Mol Diagn ; 24(4): 249-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112537

RESUMO

INTRODUCTION: Ovarian cancer, characterized by metastasis and reduced 5-year survival rates, stands as a substantial factor in the mortality of gynecological malignancies worldwide. The challenge of delayed diagnosis originates from vague early symptoms and the absence of efficient screening and diagnostic biomarkers for early cancer detection. Recent studies have explored the intricate interplay between ovarian cancer and protein glycosylation, unveiling the potential significance of glycosylation-oriented biomarkers. AREAS COVERED: This review examines the progress in glycosylation biomarker research, with particular emphasis on advances driven by mass spectrometry-based technologies. We document milestones achieved, discuss encountered limitations, and also highlight potential areas for future research and development of protein glycosylation biomarkers for ovarian cancer. EXPERT OPINION: The association of glycosylation in ovarian cancer is well known, but current research lacks desired sensitivity and specificity for early detection. Notably, investigations into protein-specific and site-specific glycoproteomics have the potential to significantly enhance our understanding of ovarian cancer and facilitate the identification of glycosylation-based biomarkers. Furthermore, the integration of advanced mass spectrometry techniques with AI-driven analysis and glycome databases holds the promise for revolutionizing biomarker discovery for ovarian cancer, ultimately transforming diagnosis and improving patient outcomes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37716343

RESUMO

Cyclic imines (CIs) produced by microalgae species and accumulating in the food chain of marine organisms are novel biotoxins that do not belong to the classical group of marine biotoxins. In the past, CIs were found only in limited areas, but in recent years, rapid changes in marine ecosystems have led to widespread CIs, increasing exposure to toxic risks. Monitoring of CIs is therefore required, but still analytically challenging due to the presence of high levels of analogues and interference from other lipophilic substances. Herein, we developed the LC/MRM-MS-based quantitative platform that can selectively enrich for marine-derived CIs and monitor seven CIs simultaneously: pinnatoxin (PnTX E, PnTX F, PnTX G), gymnodimine (GYM A), and spirolide (13-desMe SPX C, 13,19-didesMe SPX C, 20-Me SPX G). In particular, the combination of chromatographic separation by the hydrophobic nature of intrinsic residues of CIs with monitoring of CI structure-specific product ions generated by CID-MS/MS significantly improves the selectivity and sensitivity for quantitative analysis. Indeed, three CIs corresponding to PnTX G, GYM A, and 13-desMe SPX C could be successfully determined at the level of part-per-trillion (ppt) in three species of shellfish collected around the Korean Peninsula. Our analysis revealed that the expression of CIs in the Korean Peninsula was more influenced by the season rather than the species. This analytical platform with high sensitivity can be applied not only to marine biology but also to various other fields requiring CI analysis. Key Contribution: A highly sensitive analytical method for the simultaneous quantitation of cyclic imines based on LC/MRM-MS has been developed.


Assuntos
Ecossistema , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Frutos do Mar/análise , Toxinas Marinhas/análise , Iminas/análise
4.
J Pharm Biomed Anal ; 234: 115558, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37393692

RESUMO

Glycosylation is a crucial attribute for biotherapeutics with significant impacts on quality, stability, safety, immunogenicity, pharmacokinetics, and efficacy. Therefore, to ensure consistent glycosylation, a systematic review of biotherapeutics is absolutely required including the variable glycan structure (micro-heterogeneity) and different occupancy at individual site (macro-heterogeneity) from drug design to upstream and downstream bioprocesses. Various methods have been used for glyco-characterization of biotherapeutics at the glycan, glycopeptide, and intact protein levels. In particular, intact protein analysis is considered a facile and rapid glycoform monitoring approach used throughout the product development lifecycle to determine suitable glycosylation lead candidates and reproducible product quality. However, intact glycoform characterization of diverse and complex biotherapeutics with multiple N- and O-glycosylation sites can be very challenging. To address this, a robust analytical platform that enables rapid and accurate characterization of a biotherapeutics with highly complex multiple glycosylation using two-step intact glycoform mass spectrometry has been developed. We used darbepoetin alfa, a second-generation EPO bearing multiple N- and O-glycosylation sites, as a model biotherapeutics to obtain integrated information on glycan heterogeneity and site occupancy through step-by-step MS of intact protein and enzyme-treated protein. In addition, we performed a comparative assessment of the heterogeneity from different products, confirming that our new method can efficiently evaluate glycosylation equivalence. This new strategy provides rapid and accurate information on the degree of glycosylation of a therapeutic glycoprotein with multiple glycosylation, which can be used to assess glycosylation similarity between batches and between biosimilar and reference during development and production.


Assuntos
Polissacarídeos , Proteínas , Glicosilação , Darbepoetina alfa , Espectrometria de Massas/métodos , Proteínas/metabolismo , Polissacarídeos/química
5.
Emerg Infect Dis ; 29(6): 1280-1283, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209696

RESUMO

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Microscopia/métodos , Itália/epidemiologia
6.
RSC Adv ; 13(2): 1115-1124, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686942

RESUMO

Sialyllactose (SL) is the most abundant acidic oligosaccharide in human breast milk and plays a primary role in various biological processes. Recently, SL has attracted attention as an excellent dietary supplement for arthritis because it is effective in cartilage protection and treatment. Despite the superior function of SL, there are few pharmacological studies of SL according to blood concentrations in arthritis models. In this study, we investigated quantitative changes in SL and sialic acids in the plasma obtained from mini-pigs with osteoarthritis throughout exogenous administration of SL using liquid chromatography-multiple reaction monitoring mass spectrometry. Plasma concentrations of SL and sialic acids in the SL-fed group showed a significant difference compared to the control group. Mini pigs were fed only Neu5Ac bound to SL, but the concentration patterns of the two types of sialic acid, Neu5Ac and Neu5Gc, were similar. In addition, the relative mRNA expression level of matrix metalloproteinases (MMPs), which is known as a critical factor in cartilage matrix degradation, was remarkably decreased in the synovial membrane of the SL-fed group. Consequently, the temporal quantitative profiling suggests that dietary SL can be metabolized and utilized in the body and may protect against cartilage degradation by suppressing MMP expression during osteoarthritis progression.

7.
Anim Biotechnol ; 34(2): 301-309, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34392816

RESUMO

Cytidine monophosphate-Nacetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) and glycoprotein, alpha1, 3-galactosyltransferase (GGTA1) double knockout (DKO) pig models were produced to reduce immune reaction for xenotransplantation. However, the role of Neu5Gc and α-Gal in pigs has not been fully elucidated and it is necessary to consider the after-effect of inactivation of GGTA1 and CMAH in pigs. Hematological profiles of DKO pigs were analyzed through complete blood count (CBC). Histology of liver and spleen of DKO were investigated, and lectin blotting and mass spectrometry (MS) were performed to explore glycosylation changes in red blood cell (RBC) membranes of DKO pigs. DKO pigs showed common clinical signs such as weakness (100%), dyspnea (90%) and constipation (65%). DKO pigs revealed a significant decrease in RBC, hemoglobin (HGB) and hematocrit (HGB), and an increase in white blood cell (WBC), lymphocyte (LYM), monocyte (MON), and erythrocyte mean corpuscular volume (MCV). DKO piglets showed swollen liver and spleen, and exhibited raised deposition of hemosiderin and severe bleeding. Lectin assay and MS proved variations in glycosylation on RBC membranes. GGTA1/CMAH DKO pigs developed pathological features which are similar to anemic symptoms, and the variations in glycosylation on RBC membranes of DKO pigs may be attributed to the pathologies observed.


Assuntos
Técnicas de Inativação de Genes , Animais , Suínos , Transplante Heterólogo/métodos
8.
Mass Spectrom Rev ; 42(2): 496-518, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34037272

RESUMO

Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.


Assuntos
Haptoglobinas , Neoplasias , Humanos , Glicosilação , Haptoglobinas/química , Haptoglobinas/metabolismo , Espectrometria de Massas , Biomarcadores Tumorais
9.
Front Mol Biosci ; 9: 1006866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523652

RESUMO

Characterization of therapeutic monoclonal antibodies (mAbs) represents a major challenge for analytical sciences due to their heterogeneity associated with post-translational modifications (PTMs). The protein glycosylation requires comprehensive identification, which could influence on the mAbs' structure and their function. Here, we demonstrated high-resolution tandem mass spectrometry with an ultra-high-performance liquid chromatography for characterization and comparison between biologics and biosimilar of infliximab at an advanced level. Comparing the N- and O-glycopeptides profiles, a total of 49 and 54 glycopeptides was identified for each product of the biologics and biosimilar, respectively. We also discovered one novel N-glycosylation site at the light chain from both biopharmaceuticals and one novel O-glycopeptide at the heavy chain from only biosimilar. Site-specific glycopeptide analysis process will be a robust and useful technique for evaluating therapeutic mAbs and complex glycoprotein products.

10.
Food Sci Biotechnol ; 31(12): 1513-1522, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36278138

RESUMO

Cholesterol is one of the functional nutrients in human milk, which is indispensable for infant growth. In this study, the concentration of cholesterol and desmosterol in human milk from four Asian countries (n = 578), including Korea, China, Vietnam, and Pakistan, were investigated. The average cholesterol concentrations of Korea and China were similar ranging between 90.2-91.6 mg/L, but those from Vietnam and Pakistan were higher at 113.8 and 175.7 mg/L, respectively. The relative standard deviations were 31-36%, except for Pakistan (51%), showing a broad distribution of 48 to 612 mg/L. Desmosterol concentrations were similar, ranging between 11.2 and 12.8 mg/L except for Pakistan, which was lower than other countries at 9.4 mg/L. In addition, the cholesterol and desmosterol concentrations during the lactation periods were not significantly different in all four Asian countries. Mothers' BMI did not significantly impact the cholesterol and desmosterol concentration in maternal milk within the same country. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01141-9.

11.
Food Sci Biotechnol ; 31(13): 1661-1666, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36312994

RESUMO

Despite health benefits reported recently, 2'-fucosyllactose (2'-FL) concentration in maternal milk was not conclusively reported because it varies between countries and mothers. Particularly, its distribution among Korean mothers was not obtained from a reliable sample group yet. Thus, a dynamic range for 2'-FL concentration in Korean mothers' milk was investigated from 102 samples. A quantitative method using multiple reaction monitoring (MRM) by triple-quadrupole-mass spectrometry has been evaluated by a standard procedure of method validation. The 2'-FL concentration was in the range of 0.4 to 2.6 g/L overall. While the samples from secretor mothers (n = 80) contained 1.0 to 2.8 g/L of 2'-FL, the maternal milk from non-secretor mothers (n = 22) had 0.01 to 0.06 g/L of 2'-FL only. In addition to the genetic variation of mothers, the lactation period impacted the 2'-FL concentration. The average 2'-FL concentration of the late-stage group (> 60 days) was 78% of that obtained from the first month of postpartum mothers. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01154-4.

12.
Sci Adv ; 8(37): eadc9317, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112688

RESUMO

Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.


Assuntos
Encefalopatias , Lipidômica , Inteligência Artificial , Encéfalo , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Humanos , Metabolismo dos Lipídeos , Lipídeos/química
13.
Food Funct ; 13(15): 8214-8227, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833451

RESUMO

Sargassum horneri (SH), a marine brown alga, is known to contain a variety of bioactive ingredients and previous studies reported sulfated polysaccharides in SH as a potential candidate for a functional ingredient. However, immune-enhancing activity combined with Lactobacillus plantarum (LAB) is not yet studied. In the present study, we attempted to characterize sulfated polysaccharides (SHCPs) in SH by MALDI-TOF/TOF mass spectrometry and evaluate their immune-enhancing effect on macrophage cells. The main residue of SHCPs in SH is 2-sulfated 1,4-linked L-fucose and this epitope combined with LAB shows immune enhancement properties through cytokine production at the cellular level and increases the population of lymphocytes and myelomonocytes in the adult zebrafish kidney. These results indicate that SHCPs, along with LAB, have potent immune-enhancing activity and may be utilized as a potential immunomodulatory ingredient.


Assuntos
Lactobacillales , Sargassum , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Sargassum/química , Sulfatos/química , Peixe-Zebra
14.
Sci Rep ; 12(1): 11593, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804002

RESUMO

To investigate the effects of short-term low temperatures, three-year-old avocado (Persea americana cv. Hass) seedlings were treated with 1, - 2, or - 5 °C for 1 h and subsequently recovered in ambient condition for 24 h. Leaf color changes were investigated with chlorophyll, carotenoid, and phenolic contents. Photosynthetic responses were examined using gas exchange analysis. With H2O2 contents as oxidative stresses, enzymatic (ascorbate peroxidase, APX; glutathione reductase, GR; catalase, CAT; peroxidase, POD) and non-enzymatic antioxidant activities were determined using spectrophotometry. Leaves in the avocado seedlings started to be discolored with changes in the contents of chlorophyll a, carotenoids, and phenolics when treated with - 5 °C. However, the H2O2 content was not different in leaves treated with low temperatures. Photosynthetic activities decreased in leaves in the seedlings treated with - 5 °C. Of antioxidant enzymes, APX and GR have high activities in leaves in the seedlings treated with 1 and - 2 °C. In leaves in the seedlings treated with - 5 °C, the activities of all enzymes decreased. Non-enzymatic antioxidant activity was not different among leaves treated with low temperatures. These results indicated that APX and GR would play a critical role in withstanding chilling stress in 'Hass' avocado seedlings. However, under lethal temperature, even for a short time, the plants suffered irreversible damage with the breakdown of photosystem and antioxidant system.


Assuntos
Antioxidantes , Persea , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Persea/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Temperatura
15.
Artigo em Inglês | MEDLINE | ID: mdl-35457784

RESUMO

Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação por Frutos do Mar , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Iminas , Toxinas Marinhas , Fitoplâncton , Alimentos Marinhos , Frutos do Mar/análise , Intoxicação por Frutos do Mar/epidemiologia
16.
Microbiome ; 10(1): 3, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991725

RESUMO

BACKGROUND: Host tp53 mutations are frequently found during the early stages of colitis-associated colorectal cancer (CAC), but whether such mutations induce gut microbiota dysbiosis and chronic intestinal inflammation that contributes to the development of CAC, remains unknown. RESULTS: We found that zebrafish tp53 mutant larvae exhibited elevated intestinal inflammation, by monitoring the NFκB activity in the mid-distal intestines of zebrafish larvae using an NFκB:EGFP transgenic reporter line in vivo as well as neutrophil infiltration into the intestine. This inflammation was due to dysbiotic gut microbiota with reduced diversity, revealed using both 16S rRNA amplicon sequencing and a germfree larva model. In this dysbiosis, Aeromonas spp. were aberrantly enriched as major pathobionts and exhibited the capacity for aggressive colonization in tp53 mutants. Importantly, the ex-germfree experiments supported the causality of the host tp53 mutation for inducing the inflammation. Transcriptome and high-performance liquid chromatography analyses of the host gastrointestinal tracts identified dysregulated sialic acid (SA) metabolism concomitant with increased host Neu5Gc levels as the key determinant of aberrant inflammation, which was reversed by the sialidase inhibitors oseltamivir and Philippin A. CONCLUSIONS: These results demonstrate a crucial role for host tp53 in maintaining symbiosis and immune homeostasis via SA metabolism. Disturbed SA metabolism via a tp53 mutation may be exploited by specific elements of the gut microbiome, eliciting both dysbiosis and inflammation. Manipulating sialometabolism may therefore provide an efficacious therapeutic strategy for tp53 mutation-induced dysbiosis, inflammation, and ultimately, related cancers. Video Abstract.


Assuntos
Disbiose , Ácido N-Acetilneuramínico , Animais , Disbiose/induzido quimicamente , Inflamação , Mutação , Ácido N-Acetilneuramínico/efeitos adversos , RNA Ribossômico 16S/genética , Peixe-Zebra
17.
Front Mol Biosci ; 8: 778851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888356

RESUMO

Behcet's disease (BD) is an immune disease characterized by chronic and relapsing systemic vasculitis of unknown etiology, which can lead to blindness and even death. Despite continuous efforts to discover biomarkers for accurate and rapid diagnosis and optimal treatment of BD, there is still no signature marker with high sensitivity and high specificity. As the link between glycosylation and the immune system has been revealed, research on the immunological function of glycans is being actively conducted. In particular, sialic acids at the terminus of glycoconjugates are directly implicated in immune responses, cell-cell/pathogen interactions, and tumor progression. Therefore, changes in sialic acid epitope in the human body are spotlighted as a new indicator to monitor the onset and progression of immune diseases. Here, we performed global profiling of N-glycan compositions derived from the sera of 47 healthy donors and 47 BD patients using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to preferentially determine BD target glycans. Then, three sialylated biantennary N-glycans were further subjected to the separation of linkage isomers and quantification using porous graphitized carbon-liquid chromatography (PGC-LC)/multiple reaction monitoring (MRM)-MS. We were able to successfully identify 11 isomers with sialic acid epitopes from the three glycan compositions consisting of Hex5HexNAc4NeuAc1, Hex5HexNAc4Fuc1NeuAc1, and Hex5HexNAc4NeuAc2. Among them, three isomers almost completely distinguished BD from control with high sensitivity and specificity with an area under the curve (AUC) of 0.945, suggesting the potential as novel BD biomarkers. In particular, it was confirmed that α2,3-sialic acid at the terminus of biantennary N-glycan was the epitope associated with BD. In this study, we present a novel approach to elucidating the association between BD and glycosylation by tracing isomeric structures containing sialic acid epitopes. Isomer-specific glycan profiling is suitable for analysis of large clinical cohorts and may facilitate the introduction of diagnostic assays for other immune diseases.

18.
Anal Chem ; 93(43): 14497-14505, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724788

RESUMO

A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.


Assuntos
Glicômica , Polissacarídeos , Óxido de Deutério , Células HeLa , Humanos , Marcação por Isótopo
19.
J Ginseng Res ; 45(5): 539-545, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34803423

RESUMO

BACKGROUND: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. METHODS: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 °C. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. RESULTS: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn -18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. CONCLUSION: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.

20.
Cancer Lett ; 521: 294-307, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34416337

RESUMO

The deregulation of polypeptide N-acetyl-galactosaminyltransferases (GALNTs) contributes to several cancers, but their roles in lung cancer remain unclear. In this study, we have identified a tumor-suppressing role of GALNT3 in lung cancer. We found that GALNT3 suppressed lung cancer development and progression in both xenograft and syngeneic mouse models. Specifically, GALNT3 suppressed lung cancer initiation by inhibiting the self-renewal of lung cancer cells. More importantly, GALNT3 attenuated lung cancer growth by preventing the creation of a favorable tumor microenvironment (TME), which was attributed to GALNT3's ability to inhibit myeloid-derived suppressor cell (MDSC) infiltration into tumor sites and subsequent angiogenesis. We also identified a GALNT3-regulated gene (GRG) signature and found that lung cancer patients whose tumors exhibit the GRG signature showed more favorable prognoses. Further investigation revealed that GALNT3 suppressed lung cancer cell self-renewal by reducing ß-catenin levels, which led to reduced expression of the downstream targets of the WNT pathway. In addition, GALNT3 inhibited MDSC infiltration into tumor sites by suppressing both the TNFR1-NFκB and cMET-pAKT pathways. Specifically, GALNT3 inhibited the nuclear localization of NFκB and the c-MET-induced phosphorylation of AKT. This then led to reduced production of CXCL1, a chemokine required for MDSC recruitment. Finally, we confirmed that the GALNT3-induced inhibition of the TNFR1-NFκB and cMET-pAKT pathways involved the O-GalNAcylation of the TNFR1 and cMET receptors. In summary, we have identified GALNT3 as the first GALNT member capable of suppressing lung cancer and uncovered a novel mechanism by which GALNT3 regulates the TME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...